Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659789

RESUMO

Developmental and Epileptic Encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Na v ) regulator, we observed no effect of Fgf13 ablation in interneurons on Na v s but rather a marked reduction in K + channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K + channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13- related seizures and expand our understanding of FGF13 functions in different neuron subsets.

2.
JACC Basic Transl Sci ; 9(2): 181-184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510724
4.
J Clin Invest ; 134(5)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227371

RESUMO

The ability to fight or flee from a threat relies on an acute adrenergic surge that augments cardiac output, which is dependent on increased cardiac contractility and heart rate. This cardiac response depends on ß-adrenergic-initiated reversal of the small RGK G protein Rad-mediated inhibition of voltage-gated calcium channels (CaV) acting through the Cavß subunit. Here, we investigate how Rad couples phosphorylation to augmented Ca2+ influx and increased cardiac contraction. We show that reversal required phosphorylation of Ser272 and Ser300 within Rad's polybasic, hydrophobic C-terminal domain (CTD). Phosphorylation of Ser25 and Ser38 in Rad's N-terminal domain (NTD) alone was ineffective. Phosphorylation of Ser272 and Ser300 or the addition of 4 Asp residues to the CTD reduced Rad's association with the negatively charged, cytoplasmic plasmalemmal surface and with CaVß, even in the absence of CaVα, measured here by FRET. Addition of a posttranslationally prenylated CAAX motif to Rad's C-terminus, which constitutively tethers Rad to the membrane, prevented the physiological and biochemical effects of both phosphorylation and Asp substitution. Thus, dissociation of Rad from the sarcolemma, and consequently from CaVß, is sufficient for sympathetic upregulation of Ca2+ currents.


Assuntos
Adrenérgicos , Proteínas Monoméricas de Ligação ao GTP , Humanos , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Arritmias Cardíacas/metabolismo
5.
FASEB J ; 37(7): e23007, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37261735

RESUMO

Tendons are tension-bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone, and cartilage development and homeostasis, knowledge about Ca2+ signaling and the source of Ca2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca2+ signaling through CaV 1.2 voltage-gated Ca2+ channel in tendon formation. Using a reporter mouse, we found that CaV 1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;CaV 1.2TS mice that express a gain-of-function mutant CaV 1.2 in tendon. We found that mutant tendons were hypertrophic, with more tendon fibroblasts but decreased cell density. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendons. Biomechanical testing revealed that the hypertrophic tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomic analysis showed no significant difference in the abundance of type I and III collagens, but mutant tendons had about two-fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11-fold increase in the growth factor myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2, and cathepsin K. Taken together, these data highlight roles for increased Ca2+ signaling through CaV 1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation.


Assuntos
Mecanotransdução Celular , Miostatina , Animais , Camundongos , Fenômenos Biomecânicos , Colágeno/metabolismo , Miostatina/metabolismo , Proteômica , Tendões/metabolismo
6.
Nature ; 618(7964): 374-382, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225988

RESUMO

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Assuntos
Vesículas Extracelulares , Ácidos Graxos , Fígado Gorduroso , Fígado , Neoplasias Pancreáticas , Animais , Camundongos , Sistema Enzimático do Citocromo P-450/genética , Vesículas Extracelulares/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Hepáticas/secundário , Humanos , Inflamação/metabolismo , Ácido Palmítico/metabolismo , Células de Kupffer , Fosforilação Oxidativa , Proteínas rab27 de Ligação ao GTP/deficiência
7.
Nat Cell Biol ; 25(4): 565-578, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36928765

RESUMO

The pancreatic islets are composed of discrete hormone-producing cells that orchestrate systemic glucose homeostasis. Here we identify subsets of beta cells using a single-cell transcriptomic approach. One subset of beta cells marked by high CD63 expression is enriched for the expression of mitochondrial metabolism genes and exhibits higher mitochondrial respiration compared with CD63lo beta cells. Human and murine pseudo-islets derived from CD63hi beta cells demonstrate enhanced glucose-stimulated insulin secretion compared with pseudo-islets from CD63lo beta cells. We show that CD63hi beta cells are diminished in mouse models of and in humans with type 2 diabetes. Finally, transplantation of pseudo-islets generated from CD63hi but not CD63lo beta cells into diabetic mice restores glucose homeostasis. These findings suggest that loss of a specific subset of beta cells may lead to diabetes. Strategies to reconstitute or maintain CD63hi beta cells may represent a potential anti-diabetic therapy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo
9.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747837

RESUMO

Tendons are tension-bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca 2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone and cartilage development and homeostasis, knowledge about Ca 2+ signaling and the source of Ca 2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca 2+ signaling through Ca V 1.2 voltage-gated Ca 2+ channel in tendon formation. Using a reporter mouse, we found that Ca V 1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;Ca V 1.2 TS mice that express a gain-of-function mutant Ca V 1.2 channel (Ca V 1.2 TS ) in tendon. We found that tendons in the mutant mice were approximately 2/3 larger and had more tendon fibroblasts, but the cell density of the mutant mice decreased by around 22%. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendon. Biomechanical testing revealed that the hypertrophic Achilles tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomics analysis reveals no significant difference in the abundance of major extracellular matrix (ECM) type I and III collagens, but mutant mice had about 2-fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11-fold increase in the growth factor of TGF-ß family myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2 and cathepsin K. Taken together, these data highlight roles for increased Ca 2+ signaling through Ca V 1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation.

10.
Nat Cardiovasc Res ; 1(11): 1022-1038, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36424916

RESUMO

Fight-or-flight responses involve ß-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for ß-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of ß-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel ß-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.

11.
J Neurosci ; 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35672149

RESUMO

Brain enriched voltage-gated sodium channel (VGSC) Nav1.2 and Nav1.6 are critical for electrical signaling in the central nervous system. Previous studies have extensively characterized cell-type specific expression and electrophysiological properties of these two VGSCs and how their differences contribute to fine-tuning of neuronal excitability. However, due to lack of reliable labeling and imaging methods, the sub-cellular localization and dynamics of these homologous Nav1.2 and Nav1.6 channels remain understudied. To overcome this challenge, we combined genome editing, super-resolution and live-cell single molecule imaging to probe subcellular composition, relative abundances and trafficking dynamics of Nav1.2 and Nav1.6 in cultured mouse and rat neurons and in male and female mouse brain. We discovered a previously uncharacterized trafficking pathway that targets Nav1.2 to the distal axon of unmyelinated neurons. This pathway utilizes distinct signals residing in the intracellular loop 1 (ICL1) between transmembrane domain I and II to suppress the retention of Nav1.2 in the axon initial segment (AIS) and facilitate its membrane loading at the distal axon. As mouse pyramidal neurons undergo myelination, Nav1.2 is gradually excluded from the distal axon as Nav1.6 becomes the dominant VGSC in the axon initial segment and nodes of Ranvier. In addition, we revealed exquisite developmental regulation of Nav1.2 and Nav1.6 localizations in the axon initial segment and dendrites, clarifying the molecular identity of sodium channels in these subcellular compartments. Together, these results unveiled compartment-specific localizations and trafficking mechanisms for VGSCs, which could be regulated separately to modulate membrane excitability in the brain.SIGNIFICANCE STATEMENTDirect observation of endogenous voltage-gated sodium channels reveals a previously uncharacterized distal axon targeting mechanism and the molecular identity of sodium channels in distinct subcellular compartments.

12.
iScience ; 25(4): 104153, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35434558

RESUMO

The sinoatrial node (SAN) is the primary pacemaker of the heart. The human SAN is poorly understood due to limited primary tissue access and limitations in robust in vitro derivation methods. We developed a dual SHOX2:GFP; MYH6:mCherry knockin human embryonic stem cell (hESC) reporter line, which allows the identification and purification of SAN-like cells. Using this line, we performed several rounds of chemical screens and developed an efficient strategy to generate and purify hESC-derived SAN-like cells (hESC-SAN). The derived hESC-SAN cells display molecular and electrophysiological characteristics of bona fide nodal cells, which allowed exploration of their transcriptional profile at single-cell level. In sum, our dual reporter system facilitated an effective strategy for deriving human SAN-like cells, which can potentially be used for future disease modeling and drug discovery.

13.
Fac Rev ; 11: 5, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35373215

RESUMO

The publication of papers containing data obtained with suboptimal rigor in the experimental design and choice of key reagents, such as antibodies, can result in a lack of reproducibility and generate controversy that can both needlessly divert resources and, in some cases, damage public perception of the scientific enterprise. This exemplary paper by Buonarati et al. (2018)1 shows how a previously published, potentially important paper on calcium channel regulation falls short of the necessary mark, and aims to resolve the resulting controversy.

14.
Circ Res ; 130(7): 963-977, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255712

RESUMO

BACKGROUND: Increasing evidence suggests that cardiac arrhythmias are frequent clinical features of coronavirus disease 2019 (COVID-19). Sinus node damage may lead to bradycardia. However, it is challenging to explore human sinoatrial node (SAN) pathophysiology due to difficulty in isolating and culturing human SAN cells. Embryonic stem cells (ESCs) can be a source to derive human SAN-like pacemaker cells for disease modeling. METHODS: We used both a hamster model and human ESC (hESC)-derived SAN-like pacemaker cells to explore the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the pacemaker cells of the heart. In the hamster model, quantitative real-time polymerase chain reaction and immunostaining were used to detect viral RNA and protein, respectively. We then created a dual knock-in SHOX2:GFP;MYH6:mCherry hESC reporter line to establish a highly efficient strategy to derive functional human SAN-like pacemaker cells, which was further characterized by single-cell RNA sequencing. Following exposure to SARS-CoV-2, quantitative real-time polymerase chain reaction, immunostaining, and RNA sequencing were used to confirm infection and determine the host response of hESC-SAN-like pacemaker cells. Finally, a high content chemical screen was performed to identify drugs that can inhibit SARS-CoV-2 infection, and block SARS-CoV-2-induced ferroptosis. RESULTS: Viral RNA and spike protein were detected in SAN cells in the hearts of infected hamsters. We established an efficient strategy to derive from hESCs functional human SAN-like pacemaker cells, which express pacemaker markers and display SAN-like action potentials. Furthermore, SARS-CoV-2 infection causes dysfunction of human SAN-like pacemaker cells and induces ferroptosis. Two drug candidates, deferoxamine and imatinib, were identified from the high content screen, able to block SARS-CoV-2 infection and infection-associated ferroptosis. CONCLUSIONS: Using a hamster model, we showed that primary pacemaker cells in the heart can be infected by SARS-CoV-2. Infection of hESC-derived functional SAN-like pacemaker cells demonstrates ferroptosis as a potential mechanism for causing cardiac arrhythmias in patients with COVID-19. Finally, we identified candidate drugs that can protect the SAN cells from SARS-CoV-2 infection.


Assuntos
COVID-19 , Ferroptose , Humanos , Miócitos Cardíacos/metabolismo , SARS-CoV-2 , Nó Sinoatrial/metabolismo
16.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35104251

RESUMO

Calcific aortic valve disease (CAVD) is heritable, as revealed by recent GWAS. While polymorphisms linked to increased expression of CACNA1C - encoding the CaV1.2 L-type voltage-gated Ca2+ channel - and increased Ca2+ signaling are associated with CAVD, whether increased Ca2+ influx through the druggable CaV1.2 causes CAVD is unknown. We confirmed the association between increased CaV1.2 expression and CAVD in surgically removed aortic valves from patients. We extended our studies with a transgenic mouse model that mimics increased CaV1.2 expression within aortic valve interstitial cells (VICs). In young mice maintained on normal chow, we observed dystrophic valve lesions that mimic changes found in presymptomatic CAVD and showed activation of chondrogenic and osteogenic transcriptional regulators within these valve lesions. Chronic administration of verapamil, a CaV1.2 antagonist used clinically, slowed the progression of lesion development in vivo. Exploiting VIC cultures, we demonstrated that increased Ca2+ influx through CaV1.2 drives signaling programs that lead to myofibroblast activation of VICs and upregulation of genes associated with aortic valve calcification. Our data support a causal role for Ca2+ influx through CaV1.2 in CAVD and suggest that early treatment with Ca2+ channel blockers is an effective therapeutic strategy.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Animais , Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Calcinose , Cálcio/metabolismo , Células Cultivadas , Humanos , Camundongos
17.
Circ Res ; 130(2): 273-287, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050691

RESUMO

Rapidly changing and transient protein-protein interactions regulate dynamic cellular processes in the cardiovascular system. Traditional methods, including affinity purification and mass spectrometry, have revealed many macromolecular complexes in cardiomyocytes and the vasculature. Yet these methods often fail to identify in vivo or transient protein-protein interactions. To capture these interactions in living cells and animals with subsequent mass spectrometry identification, enzyme-catalyzed proximity labeling techniques have been developed in the past decade. Although the application of this methodology to cardiovascular research is still in its infancy, the field is developing rapidly, and the promise is substantial. In this review, we outline important concepts and discuss how proximity proteomics has been applied to study physiological and pathophysiological processes relevant to the cardiovascular system.


Assuntos
Miocárdio/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Animais , Humanos , Proteoma/genética , Proteoma/metabolismo
18.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156984

RESUMO

SCN2A, encoding the neuronal voltage-gated Na+ channel NaV1.2, is one of the most commonly affected loci linked to autism spectrum disorders (ASDs). Most ASD-associated mutations in SCN2A are loss-of-function mutations, but studies examining how such mutations affect neuronal function and whether Scn2a mutant mice display ASD endophenotypes have been inconsistent. We generated a protein truncation variant Scn2a mouse model (Scn2aΔ1898/+) by CRISPR that eliminates the NaV1.2 channel's distal intracellular C-terminal domain, and we analyzed the molecular and cellular consequences of this variant in a heterologous expression system, in neuronal culture, in brain slices, and in vivo. We also analyzed multiple behaviors in WT and Scn2aΔ1898/+ mice and correlated behaviors with clinical data obtained in human subjects with SCN2A variants. Expression of the NaV1.2 mutant in a heterologous expression system revealed decreased NaV1.2 channel function, and cultured pyramidal neurons isolated from Scn2aΔ1898/+ forebrain showed correspondingly reduced voltage-gated Na+ channel currents without compensation from other CNS voltage-gated Na+ channels. Na+ currents in inhibitory neurons were unaffected. Consistent with loss of voltage-gated Na+ channel currents, Scn2aΔ1898/+ pyramidal neurons displayed reduced excitability in forebrain neuronal culture and reduced excitatory synaptic input onto the pyramidal neurons in brain slices. Scn2aΔ1898/+ mice displayed several behavioral abnormalities, including abnormal social interactions that reflect behavior observed in humans with ASD and with harboring loss-of-function SCN2A variants. This model and its cellular electrophysiological characterizations provide a framework for tracing how a SCN2A loss-of-function variant leads to cellular defects that result in ASD-associated behaviors.


Assuntos
Transtorno do Espectro Autista , Comportamento Animal/fisiologia , Encéfalo/patologia , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Neurônios/metabolismo , Comunicação Animal , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Células Cultivadas , Correlação de Dados , Modelos Animais de Doenças , Regulação da Expressão Gênica , Mutação com Perda de Função , Camundongos
19.
Nat Commun ; 12(1): 463, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469025

RESUMO

Splicing varies across brain regions, but the single-cell resolution of regional variation is unclear. We present a single-cell investigation of differential isoform expression (DIE) between brain regions using single-cell long-read sequencing in mouse hippocampus and prefrontal cortex in 45 cell types at postnatal day 7 ( www.isoformAtlas.com ). Isoform tests for DIE show better performance than exon tests. We detect hundreds of DIE events traceable to cell types, often corresponding to functionally distinct protein isoforms. Mostly, one cell type is responsible for brain-region specific DIE. However, for fewer genes, multiple cell types influence DIE. Thus, regional identity can, although rarely, override cell-type specificity. Cell types indigenous to one anatomic structure display distinctive DIE, e.g. the choroid plexus epithelium manifests distinct transcription-start-site usage. Spatial transcriptomics and long-read sequencing yield a spatially resolved splicing map. Our methods quantify isoform expression with cell-type and spatial resolution and it contributes to further our understanding of how the brain integrates molecular and cellular complexity.


Assuntos
Processamento Alternativo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Biologia Computacional , Feminino , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Modelos Animais , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Análise de Célula Única/métodos , Análise Espacial
20.
Circ Res ; 128(1): 76-88, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33086983

RESUMO

RATIONALE: Changing activity of cardiac CaV1.2 channels under basal conditions, during sympathetic activation, and in heart failure is a major determinant of cardiac physiology and pathophysiology. Although cardiac CaV1.2 channels are prominently upregulated via activation of PKA (protein kinase A), essential molecular details remained stubbornly enigmatic. OBJECTIVE: The primary goal of this study was to determine how various factors converging at the CaV1.2 I-II loop interact to regulate channel activity under basal conditions, during ß-adrenergic stimulation, and in heart failure. METHODS AND RESULTS: We generated transgenic mice with expression of CaV1.2 α1C subunits with (1) mutations ablating interaction between α1C and ß-subunits, (2) flexibility-inducing polyglycine substitutions in the I-II loop (GGG-α1C), or (3) introduction of the alternatively spliced 25-amino acid exon 9* mimicking a splice variant of α1C upregulated in the hypertrophied heart. Introducing 3 glycine residues that disrupt a rigid IS6-α-interaction domain helix markedly reduced basal open probability despite intact binding of CaVß to α1C I-II loop and eliminated ß-adrenergic agonist stimulation of CaV1.2 current. In contrast, introduction of the exon 9* splice variant in the α1C I-II loop, which is increased in ventricles of patients with end-stage heart failure, increased basal open probability but did not attenuate stimulatory response to ß-adrenergic agonists when reconstituted heterologously with ß2B and Rad or transgenically expressed in cardiomyocytes. CONCLUSIONS: Ca2+ channel activity is dynamically modulated under basal conditions, during ß-adrenergic stimulation, and in heart failure by mechanisms converging at the α1C I-II loop. CaVß binding to α1C stabilizes an increased channel open probability gating mode by a mechanism that requires an intact rigid linker between the ß-subunit binding site in the I-II loop and the channel pore. Release of Rad-mediated inhibition of Ca2+ channel activity by ß-adrenergic agonists/PKA also requires this rigid linker and ß-binding to α1C.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Canais de Cálcio Tipo L/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas ras/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Células HEK293 , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Potenciais da Membrana , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/metabolismo , Fosforilação , Conformação Proteica , Coelhos , Relação Estrutura-Atividade , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...